locations aside from private residences, including at Australia’s new purpose-built quarantine facilities.

58. STATEWIDE COVID-19 HOSPITALISED PATIENT SURVEILLANCE DEVELOPMENT AND ENHANCEMENT

Judith Brett 1, Ann Bull 1, Simon Burrell 1, Ling Wang 1, Tali Kalman 1, Hilary Yeale 1, Daneeta Hennessy 2, Stacey Rowe 1, Lyn-li Lim 1,2, Leon Worth 1,2,3
1VICNISS Coordinating Centre, Melbourne, Australia
2Department of Health Victoria, Melbourne, Australia
3University of Melbourne, Melbourne, Australia

Introduction: With onset of the first COVID-19 wave in March 2020, the Victorian Department of Health (DH) engaged the Victorian Healthcare Associated Infection Surveillance System Coordinating Centre (VICNISS) to develop a system to monitor hospital patients with COVID-19. We describe the development and evolution of this program.

Methods: A secure on-line reporting module was created using the VICNISS platform. Standardised data specifications and definitions were established to monitor hospitalised patients, including: demographics, COVID-19 status at time of admission, daily location, ICU admission and ventilation status.

Hospital users were registered and provided with educational/helpline support. Hospitals and DH were able to generate real-time reports. VICNISS followed up data discrepancies, queries and/or failure to report.

Results: Weekly validation was introduced in June 2020 to confirm all hospitalised COVID cases had been reported. Upon DH request, VICNISS undertook a lookback in September 2020 to identify hospital-acquired COVID-19 infections. Historical COVID-19 episodes were reviewed and classified according to internationally-accepted definitions. In early 2021, an algorithm using these definitions was applied prospectively to inform hospitals immediately if a submitted COVID-19 case was hospital-acquired.

COVID-19 vaccination status was further added to data submission in April 2021, in order to inform policy.

Conclusion: A system that successfully captures data to inform Victoria’s COVID-19 case management capacity was rapidly deployed by leveraging the existing platform used by hospitals for infection prevention and control surveillance activities. Post-implementation enhancements improved efficiencies and timeliness of reporting to support responses and risk mitigation within Victorian facilities.

60. TRANSFORMING THE WAY WE THINK ABOUT INFECTION PREVENTION AND CONTROL - IT’S TIME TO CHALLENGE THE BIOMEDICAL RHETORIC

Vanessa Sparke 1,2,3, David MacLaren 1,2,3, Caryn West 1,2
1James Cook University, Cairns, Australia
2Collaborative for the Advancement of Infection Prevention and Control, Cairns/Gold Coast/Sunshine Coast, Australia
3Australian College for Infection Prevention and Control, Hobart, Australia

Introduction: Infection prevention and control (IPC) came to the fore during the COVID-19 pandemic with global expectations in healthcare of compliance with recognised international guidelines. Yet despite 40 years of modern IPC practice, health services around the world struggle to maintain minimal IPC standards even without the pressures of a pandemic, many are in resource-limited settings. Atoll Adventist Hospital (AAH) in the Solomon Islands is one such hospital.

Aim: To investigate IPC practice at AAH with the aim of creating a meaningful and sustainable program. In doing this, staff and community knowledge and beliefs about infection transmission was explored, and IPC practice and rationale determined.

Methods: This qualitative study employed a participatory action research methodology using Photovoice followed by semi-structured interviews as the primary data collection method. Participants included staff educated in biomedical principles, and staff with little or no formal education.

Results: Improving IPC practice is not straightforward. Cultural, spiritual and societal practices and beliefs influence how people view disease causation and transmission and affects healthcare worker’s practice. ‘Germ theory’ does not necessarily inform people’s beliefs, even for staff educated via the biomedical model; to implement IPC guidelines based on germ theory principles, and expect staff to practise accordingly, is not plausible.

Conclusion: IPC programs will only work if they are transformed into a context that is understood by staff and community - one that complements the biomedical model. Governments and hospital leaders need to consider this when implementing IPC programs. It’s time for us to challenge the rhetoric.

62. THE NATIONAL INFECTION SURVEILLANCE PROGRAM FOR AGED CARE (NISPAC): A COLLABORATIVE SYSTEMS APPROACH TO PROGRAM DEVELOPMENT, IMPLEMENTATION AND EVALUATION

Eliza Watson 1,2, Leon Worth 1,2,3, Karin Thursky 1,3,4, Janet Sluggert 5,6,7
1Emeritus David Dunt 6,7, Ann Bull 1,2,7, Noleen Bennett 1,3,7
1Victorian Healthcare Associated Infection Surveillance System (VICNISS) Coordinating Centre - Melbourne Health, Melbourne, Australia
2Peter MacCallum Cancer Centre, Melbourne, Australia
3National Centre for Antimicrobial Stewardship, Melbourne, Australia
4Registry of Senior Australians, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, Australia
5University of South Australia, Adelaide, Australia
6The University of Melbourne, Melbourne, Australia
7NISPAC Advisory Group, Australia

Introduction: Residents of residential aged care facilities (RACFs) are vulnerable to infections, many of which are preventable. Infection and antimicrobial use surveillance programs are therefore a vital part of infection prevention and control (IPC) activities for Australian RACFs and support quality and safety systems for residents, staff and visitors. In Australia, there is currently no nationally coordinated surveillance program.

We aim to develop a National Infection Surveillance Program for Aged Care (NISPAC), which will streamline and standardise surveillance methodology and enable national benchmarking.

Method: Three peak bodies - the Victorian Healthcare Associated Infection Surveillance System (VICNISS), the National Centre for Antimicrobial Stewardship (NCAS) and the Registry for Senior Australians (ROSA) - have collaborated to endorse a staged investigation, development and implementation framework for the establishment of NISPAC.

Results: The investigation stage involves qualitative interviews with surveillance staff, a survey of RACF staff, document analysis and data linkage to understand existing surveillance programs. The development stage will use results from these methods, along with focus groups and user testing by RACF staff, and expert consultation to develop NISPAC. Finally, the program will be trialled in a representative sample of RACFs. Across these stages, the framework draws on the Centre for Disease Control and Prevention guidelines for evaluating public health surveillance systems, the Theoretical Domains Framework and co-design principles.

Conclusion: A systematic and comprehensive framework for development, implementation and evaluation of NISPAC will support the establishment of a robust and integrated national program.

63. PATIENT SAFETY COMES FIRST THROUGH IMPLEMENTING RIGOROUS INFECTION PREVENTION STANDARDS WHEN USING ENDOCAVITY PROBES FOR ULTRASONOGRAPHY

David J. Weber 1
1University of North Carolina, Chapel Hill, America

Introduction: Clinicians Need To assure proper cleaning and disinfection of endovacuty ultrasound probes to prevent patient infection. Ultrasonography constitutes an integral part of modern patient care. Now with a broader cross-section of specialists that includes radiologists, obstetricians, gynecologists, urologists and emergency physicians.